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The role of  probability theory in classical physics is examined.  It is found that 
the probabilities for the outcomes of  typical experiments depend strongly on the 
assumed behavior of  given classical models  "at  infinity." A discrete classical 
model is introduced and it is shown that the resulting probabilities are similar 
to those in the usual  theory of  quan tum mechanics.  

INTRODUCTION 

On the face of it, there would seem to be many differences between 
classical mechanics and quantum mechanics. For example, the notion of 
the "observer" plays a large role in the quantum theory, but it is thought 
to be unimportant in the classical theory. Furthermore, the classical theory 
is considered to be sensible and easy to understand, while the quantum 
theory remains mysterious. The usual ideas of probability theory seem to 
apply to classical mechanics, but not to quantum mechanics. 

But do these common perceptions really reflect the true situation in 
physics? It is often said that, within classical physics, if we were to know 
with perfect accuracy the positions and velocities of all particles, then the 
future course of the universe could be calculated with absolute precision. 
But who is to do the "knowing"? Is it a person whose brain is also composed 
of particles? By posing this question, it becomes clear that many of  the 
traditional quantum paradoxes could equally well be applied to classical 
physics. 

Also, much is made of the fact that complex-valued amplitude functions 
are used in quantum mechanics. But in reality we do not experience these 
complex functions directly. Rather, they are used within the context of a 
certain mathematical framework to calculate real-valued probabilities for 
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the results of real experiments. In just the same way, real probabilities 
within the theory of classical mechanics are often calculated by means of 
involved mathematical reasoning. (For example, it has often been remarked 
that the complex-valued characteristic function of traditional probability 
theory can be made to resemble a quantum mechanical amplitude function.) 

Contrary to the usual view, classical mechanics has never been shown 
to follow from simple mathematical postulates. In fact it is, like quantum 
mechanics, nothing more than an ad hoc collection of vague rules of  thumb, 
combined within a certain general philosophical framework. 

But what happens if we decide to apply the more stringent philosophical 
principles of quantum mechanics to the classical theory? This is an interest- 
ing question which seems to have received little attention. Many physicists 
may believe that there is nothing to be gained by thinking about the old 
classical theory. However, if one is prepared to consider critically the role 
of probability theory in classical mechanics, then a possible mechanism for 
quantum mechanical probabilities soon becomes apparent. 

1. A H I E R A R C H Y  O F  C L A S S I C A L  M O D E L S  

The principles of quantum mechanics are often explained in terms of 
the famous two-slit interference experiment. A source emits electrons which 
travel through an apparatus to an absorbing screen. Along the way they 
must pass through an obstructing screen which has two slits etched into it. 
Within the classical picture, the probability for the electron going through 
each of the slits is taken as given, and the total probability for landing at 
some point on the absorbing screen is the sum of the probabilities for each 
slit. On the other hand, in quantum mechanics one calculates the complex 
amplitude for each of  the two possibilities, adds them together to give a 
further complex number, and then the probability is the square of the 
absolute value of this number. 

The "observer" comes into the picture if we allow him to look very 
closely at the two slits to determine the exact path of the electron. As soon 
as he becomes successful, then it is found that the "classical," rather than 
the "quantum mechanical" calculation should be applied. But what is this 
classical calculation? In reality it is no calculation at all, rather it is the 
simple assertion that the two events of the electron going through one or 
the other of  the slits are independent of each other. What then is the 
reasoning which leads to this assertion? 

To begin with, classical mechanics is "deterministic." The basic object 
in classical physics is a mathematical mode l - -a  complete set of particle 
paths in space-time--which describes completely the entire universe. Given 
this set, then we would know the behavior of all physical systems at all 
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times, and thus probabili ty theory would be meaningless. The problem is 
that we do not "know"  all the details of  this hypothetical set. On the other 
hand, we do know something. For example,  we might know that an apparatus 
exists in a physics laboratory which behaves like a two-slit experiment. 
Within the classica ! picture, this knowledge can be interpreted as some kind 
of  incomplete knowledge about the hypothetical classical model of  the 
universe. 

According to the classical philosophy, this model obeys some collection 
of abstract "laws of nature."  One may decide that these laws are to be 
considered as being of pr imary importance. I f  we do this, then we no longer 
have one single model of  the universe, but rather a different kind o f " m o d e l "  
which is really just a general framework for many possible "configurations" 
of  the model. The laws of  nature are usually described in terms of variational 
principles. A value is assigned to each imaginable configuration, then a 
configuration with a "bes t"  or "most  extreme" value is identified as being 
an actual configuration of  the universe. 

A variational principle can also be applied in cases where our knowl- 
edge of the universe is incomplete. The information which we have might 
be compatible with many different configurations of  the model, and each 
of them could plausibly be an actual configuration of the universe. Since 
our knowledge is incomplete, we are forced to consider all of  the possible 
configurations which are compatible with our incomplete knowledge of the 
universe. We have no reason to say that any one of these possible configur- 
ations is more likely than any other, so this gives the rule that all of  the 
possible configurations should have an equal statistical weighting. 

Seen in this way, it becomes clear that classical physics does not really 
require the concept of  a single deterministic model for everything in the 
universe. Instead, we can substitute a kind of hierarchy of increasingly more 
comprehensive models, representing a sequence of  increasingly detailed 
specifications for a given experiment. There are a number  of  different ways 
of  doing this. One possibility is the  following. 

Let us begin by specifying that "classical physics'" is to consist of  a 
collection of  timelike particle paths (or "world-l ines") in four-dimensional 
Minkowski space M 4. Denote this set of  paths by F. A typical element 
y c F is a mapping -y: R-~ M 4 of the real numbers,  considered as an ordered 
set, into the space M 4, which also has the structure of  a partially ordered 
set. "Timel ike"  then means that the mapping 3, is order preserving. It may 
be convenient to associate further numbers--e .g . ,  "mass"  or "electrical 
charge"- -wi th  each particle path. 

Let us imagine that we are interested in calculating the probabilities 
for the various possible outcomes of some particular experiment. Now it 
is reasonable to imagine that the experiment is located in some finite region 
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of space-time. The specification of the experiment represents our limited 
and incomplete knowledge of the situation in this finite region. To be 
specific, denote the region by Uo c M 4. We will assume that Uo is compact. 

By restricting our attention to U0, we can also restrict our attention to 
the intersection of the paths in F with Uo. In general, it is sensible to assume 
that only finitely many paths in F intersect any given compact set C c M 4. 

Thus, we can take Fo be the finite set of paths in F meeting Uo. Furthermore, 
the paths in Fo are only defined as mappings from intervals of R to Uo. In 
order to know the result of the given experiment, and in fact to know 
everything about this region of space-time, it is only necessary to know 
everything about the finite set Fo. 

But the problem of  trying to understand Fo is itself a kind of "experi- 
ment," which is somewhat more ambitious than the original, given experi- 
ment. To understand this new experiment, we take a larger, compact set 
U 1 c M 4, with Uo c U~. Let the finite set of  paths F~ be defined to be the 
intersection of F with U1, in analogy to the case of Fo. 

Going a step further, we see that the problem of knowing F1 is a further 
experiment. By continuing this process, we obtain a sequence Uoc U~ 
U2c U3"" of  compact neighborhoods of the given experiment, and a 
sequence F o c F ~ F 2 c  F 3 . - -  of finite particle paths, with Fi being the 
intersection of the paths in F with the set Ui c M 4. Any such sequence of 
neighborhoods will be called "proper"  if for any given compact set C c M 4, 
there exists some index i -> 1, with C c Fi. 

But note that our definition of the set Fi, for each i-> 1, depends on a 
complete knowledge of the hypothetical actual universe F. It is more realistic 
to admit that we do not know what F is. Instead, for each Ui there is a 
whole collection ~i of  possible sets of paths in the neighborhood, represent- 
ing the intersection with U~ of all the possible configurations of the model 
which are compatible with our knowledge of the situation. Thus, F~ ~ ~'~, 
but in general there may be many further finite sets of paths in E~ as well. 

Let us call the given experiment E. One might imagine that E is a 
property of a given set of particle paths; namely the set describes a universe 
containing the experiment E. Thus, each of the paths in "~i, for each i, has 
the property E. An experiment would be meaningless if there was only one 
possible result. Therefore let P and Q be two different results of E. Denote 
by E(P) or E(Q) the experiment with the result P or Q, respectively. 
Assume that the two results are mutually exclusive, so that a set of particle 
paths can have either the property E(P) or E(Q) ,  but not both properties. 

The main question for us is to calculate the relative probabilities of 
the two results P and Q. Within each neighborhood U~, it may be possible 
to calculate the probabilities of these two results. We obtain two numbers, 
~ ( P )  and ~i(Q),  which we call the "probabilities with respect to U~." 



QM in a Discrete Model of Classical Physics 1339 

There is no reason to suppose that 3~i(P)= ~ ( P )  for i~j. However, we 
might hope that a limit exists ~i(P)-~(P), as i . o o ,  for each possible 
result P of  the experiment E. If  there are limiting probabilities for all 
possible experimental results, and for all possible proper  sequences of  
neighborhoods,  then the experiment itself will be called "proper ."  From 
now on it will be assumed that all experiments which we consider are proper.  

2. PROBLEMS WITH CLASSICAL PHYSICS 

The great problem in classical physics is that we have no sensible way 
of dealing with infinite sets of particle paths. Imagine some commonplace  
event in the physical world: for example, the passage of  an electron through 
a vacuum tube. The path might be curved, and we attribute this to the idea 
that it passes through an "electrical field." But where does the electrical 
field come from? Surely it comes from the effects of  other particles in the 
physical world. And then these other particles are influenced by still more 
particles, and so on. Even such a great mathematician as Gauss struggled 
to find a way of dealing with these infinite-particle spaces, but without 
success. 

A way out of  this conceptual di lemma was suggested by Maxwell. His 
solution, which is now considered to be the standard framework for classical 
physics, was to think of the idea of electromagnetic fields as being of primary 
importance. We should no longer concern ourselves with the idea that the 
fields come from specific events in the past; instead, the fields are simply 
specified as being "there."  This idea has indeed proven to be very practical, 
but by the same token, it sometimes leads to rather bizarre ways of thinking. 
Consider, for example, the standard derivation of  the laws of black-body 
radiation. How strange it is when modern physics textbooks suddenly assert 
that we are living in a boxlike world whose flat walls are able to reflect 
electromagnetic radiation perfectly! But even beyond this, the idea of 
abstract fields leads to great mathematical  problems. For example,  Dirac 
has shown that the infinite "field" of  a pointlike charged particle will 
generally lead to an exponentially increasing self-acceleration of the particle. 

Few people today give much thought to these old and well-known 
problems in the foundations of classical physics. Instead, people occupy 
themselves with new problems in the modern quantum physics. These prob- 
lems are also concerned with the relationships of  "fields" and "particles." 
The modern physicist imagines that his or her methods are very sophisti- 
cated, and that the intellectual struggles of  the old classical physicists are 
irrelevant to current work. But could it be that the new problems are really 
nothing more than the old problems, formulated in a strange way so that 
the connection has become obscured? 
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Tlfese questions are very important if we are to make any progress in 
understanding the role of  probability theory in classical physics. For 
example,  we could investigate the statistical properties of  a finite, boxlike 
universe with mirrors for walls, containing abstractly given "electromagnetic 
fields." Such an investigation might lead to certain results which we would 
then loosely describe as the "classical statistics." But what would be the 
value of such work? Surely it is not enough to simply specify the electromag- 
netic fields in some arbitrary way. This is so because the fields come from 
further particles, and those particles are also involved in the statistical 
calculation. One might hope that the easy calculations using the "boxes"  
might lead to the same results as would be obtained when a more accurate 
method is used. But in reality this is not the case. In fact, there are important 
statistical effects which become lost when using the box method. 

3. EQUIVALENCE CLASSES OF PARTICLE PATHS 

We are concerned with calculating the relative probabilities for the 
different outcomes of given experiments. Let some neighborhood Ui in a 
hierarchy be given, together with the collection Ei of  possible sets of  paths 
in Ui. Our task is to count up the number  of  elements of  Ei which have 
the property E(P), say. At the moment  we are using the traditional 
f ramework of classical physics; that is, we assume that the particles are 
continuous paths in a continuous space-time geometry. Of  course within 
this f ramework one would generally expect to have an infinite number  of  
different elements of E~, and there is no simple way of counting "infinity." 
Thus, we are confronted here with another of  the traditional problems of 
classical physics; how should we deal with the infinite numbers of  possible 
paths which are allowed by the classical model?  The standard procedure 
is to define some measure on the space of possible paths. For example, 
Wiener measure is a popular  choice. But if we do this, then we again make 
many "h idden"  assumptions about what we believe "classical physics" is 
supposed to be - - in  a manner  very similar to the use of  "electromagnetic 
fields" in hypothetical closed boxes somewhere out in space-time. A better 
way of proceeding is to change from continuous paths to discrete paths, 
for example,  as in Hemion (1988). There are many possible discretiza- 
tion schemes which could be reasonably considered. The main point is to 
proceed in such a way that we are guaranteed of always having finite sets 
":i. For the moment,  though, the details of this discretization process are 
unimportant.  

The important thing is that for each index i, we can define an 
equivalence relation between the elements of  Ei. Let k > 1 be two given 
indices. Assume 0 c Ek. Then, since UI c Uk, we must have that Oil --- 0 c~ Ul 
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is an element of  ~71. The set of  paths OIi ~ -~1 will be called the intersection 
of  O with with UI. Of  course, it is possible to have two elements @ ~ l~ in 
Uk, with | = f~[l in UI. On the other hand, let qb, 0 c 7"71. We will say that 
they are i -equivalent,  written �9 ~i  ,9, if for each possible index k >  i, there 
exist two elements r k, O k E ~--k, with qbkll = qb and ok[i = O, and yet ~k n 
( Uk -- Ui) = O k n ( Uk -- Ui). That is, within the f ramework of the quantum 
philosophy, we have no way of "distinguishing" between qb and O outside 
the neighborhood Ui. In particular, we can assume this means that if P is 
some particular result of  the experiment E, then either both �9 and O do, 
or do not, have the property E ( P )  together. 

The relation " ~ "  is clearly an equivalence relation. But can we assert 
that this seemingly complicated definition makes much sense? For example,  
one could ask whether it is possible to have two distinct sets �9 r O which 
are elements of  some El, and yet qb =~ O, for some sufficiently large i. To 
answer this question in a rigorous manner,  it would be necessary to make 
very specific assumptions concerning the details of  the assumed "laws of 
nature" which one would like to postulate. Furthermore,  assumptions would 
have to be made about  possible restrictions on the class of  configurations 
of  the model which are to be brought into consideration. It is obvious that 
such an investigation would lead to a mass of  uninteresting technical results, 
thereby diverting our attention from the main question. Surely the best way 
to proceed is to simply assert that the concept of  "classical physics" should 
be defined in such a way that arbitrarily given (homogeneous) electro- 
magnetic fields in a confined region C (in M 4) can be generated by poss- 
ible particle configurations in "distant"  regions of  space-time (that is, in 
M 4-  C). Given this, then it must follow that the /-equivalence classes 
generally contain many distinct elements. 

The reason for concentrating on the/-equivalence classes is that it gives 
us a method for counting and comparing the number  of  configurations of  
the classical model which represent different outcomes of the experiment E. 
It is sensible to first look at the possible equivalence classes, considering 
them as entities on their own. As we will see, classical mechanics is very 
similar to quantum mechanics in this respect. Then we estimate the number  
of  elements in each equivalence class in order to calculate their relative 
probabilities. 

There is also a further point, which has received too little attention in 
the traditional investigations of  classical physics. Consider the very idea of 
a "variational principle." There are two different ways of looking at this 
idea. (I) Given a specification configuration X of the classical model, we 
might "vary"  it to obtain a different configuration X*. Only such "vari- 
ations" of  X might be admitted for comparison with X. (II)  The other 
method is to say that we are allowed to compare  arbitrary configurations 
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X and Y with one another to determine if X is most extreme. Many people 
might, on first thought, assert that classical physics operates according to 
the rule II, but of course that is quite false. The standard Lagrangian 
variational principles involve, among other things, the total lengths of the 
particle paths in the given configuration of the model. But this total length 
is simply infinity, and so no sensible comparisons can ever be made! In 
reality classical physics is based on variational principles of type I, and the 
varied configurations X* can only differ from the original X within some 
compact region of space-time. That is to say, classical physics only makes 
sense within the context of individual equivalence classes of configurations 
of the model, where equivalence is now taken to mean the identity of two 
particle path spaces outside some given compact set in M 4. In classical 
physics it is nonsense to attempt to compare different equivalence classes 
with one another in any detailed way. 

4. DEALING WITH EQUIVALENCE CLASSES 

Let ~ ,  A c E0 be any two path spaces in the smallest neighborhood Uo 
of the given experiment E. If we continue to assert that arbitrary electromag- 
netic fields can be generated by charged particles in distant regions of 
space-time, then it must be the case that for some sufficiently large i, we 
have �9 ~'-~-" i A. Therefore, it would make little sense to define an equivalence 
relation by saying that two elements ~ and A are equivalent if q~ ~'-~-i A, for 
some Sufficiently large i. Such an equivalence relation would be trivial in 
the sense that all elements would be equivalent to one another. Therefore, 
it is necessary to argue in terms of an /-equivalence relation for various 
fixed values of the index i. 

For fixed i, there is a simple condition which must be fulfilled if �9 ~ i A 
for two given elements xF, Ac'~i. Since x [ z k f - ~ ( U k - - U i ) : A k ( - ' ~ ( U k - - U i )  , 

for all k > i, it must follow in particular that ~ and A have the same number 
of path intervals in U~, and furthermore, the ends of corresponding paths 
meet the boundary of Ui in identical points. Therefore, we could expect to 
have many different /-equivalence classes in ~_~. 

This whole concept of dealing with the /-equivalence classes is very 
much removed from the usual approach in classical physics. We are used 
to thinking about the properties of individual configurations of the model, 
not equivalence classes of configurations. Is it possible to say that each 
/-equivalence class is "near  to" some definite configuration, thus allowing 
us to imagine that the equivalence class is really just this configuration, 
together with some class of  variations of it? 

Let E be some/-equivalence class. E consists of  a collection of particle 
path spaces, which are possible solutions to the given variational principle. 
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But of  course it is impossible for us to have complete knowledge of the 
whole universe. Thus, as a practical matter, it would make sense to try and 
apply the variational principle to the individual elements of  ~, but confining 
the calculation to the parts of  the paths within Ui. For example,  one could 
assume that all elements of  E are extended outside of  U~ by a single, common 
set of  paths, which are defined throughout the set M 4 -  U~. In this way it 
would be possible to compare  the different elements of  E, and we may 
assume that the variational principle is such that one single element of  E 
will be found to be most extreme. Let F~ be this single most extreme element 
of  E. Of  course, one should remember  that F~ is a set of  particle paths in 
Ui, and the other elements of  Y are also sets of  particle paths in U~ which 
all meet the boundary of  U~ in the same way as F~. Thus, these other 
elements of  Y are indeed "variat ions" of  F~ in a very concrete sense. 

In the sequel, then, we will often be dealing with/-equivalence classes 
of  particle paths. But given such an equivalence class E, we will imagine 
that it has definite geometric properties, as given by the single most extreme 
element F~. 

5. CALCULATING PROBABILITIES  IN A H I E R A R C H Y  

For some given outcome P of  the experiment E, we must try to find a 
method of calculating the probabilities ~ i (P )  of  P with respect to Ui. We 
are assuming that some discretization technique is being used to ensure 
that the number  of  different possible configurations of  the model in Ui-- that  
is, the number  of  elements in the set ~ i - - i s  always finite. This allows us to 
use simple counting arguments. Once we have calculated the number  ~ i (P) ,  
it is then necessary to calculate the probabilities ~ j (P ) ,  for all j >  i. The 
true probabili ty ~ ( P )  is defined to be the limit as j -~ co. But the property 
P is always determined within the original neighborhood U0. Thus, ~ ( P )  
is determined by counting the numbers of  configurations qb ~ _~j for increas- 
ingly large j, but then concentrating on the behavior  of  such q~ in U0, that 
is, concentrating on qblo. 

The central idea, which cannot be overemphasized, is that within the 
context of  classical physics it is possible to compare configurations of the 
model within a single equivalence class, but it makes no sense to attempt to 
compare inequivalent configurations with one another. How can this idea 
be applied to the calculation of probabilities for the results of  experiments 
in classical physics? 

To begin, one should recall the basic thing which distinguishes classical 
from quantum physics. This central difference is that each possible con- 
figuration of  a classical model is taken to be independent of  all other 
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configurations, while in quantum physics the different configurations 
"interfere" with one another in some mysterious way. Now we would agree 
that in classical physics, inequivalent configurations are independent of  one 
another. But we will assert that the same cannot be said for equivalent 
configurations. 

The rules for calculating probabilities within equivalence classes will 
be dealt with presently. For the moment,  though, we should concentrate 
on the different equivalence classes. But we have seen that each equivalence 
class can be represented by its single most extreme element. Thus, we can 
think about the set of  all such most extreme elements and assert that they 
are all independent  of  one another. This set of  most extreme elements could 
be denoted the set of  "classical paths" for a given experiment. According 
to this definition (which involves the use of  quotation marks), each of the 
other possible configurations of  the model are not "classical paths";  rather, 
each is a variation of some specific "classical path." 

For example,  we could think about the two-slit experiment. It is sensible 
to assert that all of  the "classical pa ths" - - tha t  is, the most extreme configur- 
ations in each equivalence class--are  independent  of  one another. Thus, 
each "classical path"  goes through one or the other slit. In either case, we 
obtain a Gaussian distribution on the absorbing screen, and the total 
probabili ty for all the "classical paths" is the sum of these two distributions. 
But of  course this is not the total probabili ty for the experiment as a whole. 

It is not enough to simply concentrate on the set of  "classical paths,"  
which after all has been chosen from the whole set E,- in a rather arbitrary 
way. We must count all of the elements of  ~i.  That is to say, we must 
calculate the numbers of  elements in each equivalence class. Then the 
statistical weight of  each "classical path"  should be taken to be proport ional  
to the number  of  elements in its equivalence class. 

6. STATISTICAL PROPERTIES  OF DISCRETE PATHS 

Until now we have asserted that the basic model for classical physics 
should involve spaces of  particle paths, which are defined as continuous, 
order-preserving mappings from the real numbers R into Minkowski space 
M 4. The idea that space-time is continuous does indeed give the traditional 
f ramework of classical physics. But it is easy to argue that this continuity 
hypothesis is precisely the point where the traditional classical physics goes 
badly wrong. Which experiments could possibly disprove the contrary 
hypothesis, that space-time is discrete? Furthermore, the great unresolved 
mathematical  problems of classical physics stem precisely from the hypo- 
thesis of  continuity. It may be fashionable to investigate the Byzantine 
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complications of possible "singularities" in a continuous classical model 
of space-time, but in the end, what do such investigations have to do 
with "phys ics"- - tha t  is, the study of  the true physical world of human 
experience? Finally, it is clear that quantum mechanics involves discrete, 
rather than continuous phenomena. The problem of trying to fit a discrete 
quantum theory into the traditional continuous framework of classical 
physics presented immense mathematical problems to the founders of 
quantum mechanics at the beginning of  the century. After many years of 
intellectual effort, they finally succeeded in finding discreteness in the 
solution sets of certain complex differential equations. Therefore, modern 
physics attempts to deal with quantum (i.e., discrete) phenomena in terms 
of the traditional continuous framework of the old classical physics. It is 
certainly astonishing that such an idea almost appears to work. Of course 
the standard problems of  singularities in continuous space-time (in the guise 
of "renormalization theory")  continue to occupy many theorists even now. 
But surely anyone who is prepared to think about the overall development 
of  modern physics would agree that a discrete mathematical description 
would be more appropriate. 

How should we define such a discrete mathematical model? In Hemion 
(1989) I argued that our experience of the world involves a process of 
gathering new information', based on already given information. That is, 
our experience can be described in terms of "experiments." But each 
experiment has a definition, which involves the known conditions of the 
experiment. I argued that the set of such "known conditions" could be 
imagined to have an abstract geometric structure, which we could call 
"space-time." But this would mean that it is impossible to devise an 
experiment to determine the detailed properties of space-time; after all, no 
experiment can be devised to test the experimental setup itself! This means 
that the details of any discrete model for physics cannot be tested using 
practical real-world experiments. Perhaps, then, there may be many different 
possible discrete models for physics which are all equally valid, in the sense 
that they all describe with complete accuracy the relative probabilities for 
the results of  physical experiments. 

One possibility for such a discrete model might be obtained by retaining 
the continuous space-time M 4 and replacing the continuous particle lines 
3',.: R o  M 4 by discrete particle lines Yd : Z ~  M 4, where Z c  R is the set of 
integer numbers. The discreteness condition is that the Lorentz distance in 
M 4 between adjacent points on ya is a constant (which can be related to 
the "physical mass" of the particle). In addition, it is necessary to replace 
the continuous variational principle by a new variational principle which 
is relevant for such discrete paths. Perhaps the simplest idea would be to 
simply rewrite the traditional Lagrangian expression for continuous paths 
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by replacing each term involving an integral with a term involving the 
corresponding discrete sum, for example, as in Hemion (1988). 

But regardless of  the details of such a process, it is easy to see that the 
discrete model will involve new statistical effects. For, let �9 -~i A, where 
qb, A ~ -~i, and -~i is now a set of  discrete particle path spaces. The condition 
that ~k n ( Uk -- U~ ) = A k n ( U k  - -  U i  ) , V k > i, means that the discrete set of 
points of ~k must be identical with the discrete set of points of A k outside 
U~. Furthermore, the condition that the Lorentz distance between adjacent 
points on the particles is constant provides a strong restriction on the 
possible paths qb and A through U~. 

Consider, for example, the two-slit experiment. One might choose the 
first neighborhood Uo in such a way that its boundary 0 Uo contains both 
the particle source and the absorbing screen, as shown in Figure 1. Then 
an equivalence class E in Eo is such that the (Lorentz) ler/gths of all the 
particle paths in it are exact multiples of some fundamental constant. 

Let P a n d  Q be two points on the absorbing screen. P is a point of 
constructive interference according to the usual calculation in quantum 
mechanics. That is, let L(P, l) be the Lorentz length of the most direct path 
from the source to P through the left slit, and let L(P, r) be the length 
through the right slit. Then L(P, I ) -L(P,  r)=0 mod A, where A is some 
fundamental physical constant, which can be related to Planck's constant. 
Similarly, Q is a point of  destructive interference, i.e., L(Q, l ) -L (Q ,  r)= 
A/2 mod A. 

Can we assert that, as in quantum mechanics, the probability of  P with 
respect to Uo is greater than the probability of Q? That is, ~o(P)  > ~o(Q)? 
Surely this is a reasonable assertion. After all, our previous reasoning must 
lead to the conclusion that the number of "classical paths" (representing 
0-equivalence classes) near to P is about the same as the number of"classical 
paths" near to Q; such paths are independent of one another, and thus we 

Smallest Neighborhood U 0 

Source 

Fig. 1. 
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can apply the classical reasoning to them. Furthermore, the geometry of 
the experiment is such that the equivalence classes going through P must 
have more elements than the equivalence classes going through Q. 

But note that this last statement needs further justification. It would 
follow if we can justify the following two assertions: namely (A) that the 
"classical pa th"  representing an equivalence class in the two-slit experiment 
follows nearly straight lines from the source to the slits, and from the slits 
to the absorbing screen, and (B) that most of  the elements in an equivalence 
class also follow nearly straight lines. Certainly assertion A is true for 
reasonable choices of  the Lagrangian. But B is not so clear. 

Although we have made a number  of  definitions and assumptions,  in 
reality we have been avoiding the main problem of classical physics, namely 
the fact that it is impossible to deal with infinite particle spaces. At some 
point it is necessary to make definite assumptions concerning the behavior  
of  these particle spaces "at  infinity." The assumption we make is that the 
background electromagnetic f ields--the "cosmological  background,"  if one 
will-- is  weak and random. In the end, this assumption could be translated 
into a condition on the classical "mode l"  which we are considering. But it 
would be pointless to try to find some complicated technical condition 
involving the variational principle, the class of  allowed configurations of  
the model,  etc. In reality, the assumption can best be stated in the form B 
above. 

Given that the probabili ty of  P is greater than the probabili ty of Q 
with respect to Uo, what can we say about the probabilities with respect to 
Ui, for i > 0? One might at first believe that for large i, the effect which we 
have just described becomes small. For example,  one might think that, as 
in the traditional view of the "classical probabilit ies," we might have 
~ i ( P ) ~ i ( Q )  as i~oo.  But consider the following idea. Let E be a 0- 
equivalence class. Then it is a simple consequence of our definitions that 
for each i >  0, there is an /-equivalence class Ei in Eg containing E, in the 
sense that the intersection of  each element of  E i with Uo is an element of  E. 

The problem now is to compare the probabilities of  P and Q with 
respect to U~. But recall that the two different results P and Q are assumed 
to be mutually exclusive. The "observer"  sees that either P or Q is the 
result, and perhaps writes this down on a piece of  paper, or whatever. In 
any case, it is impossible to have an /-equivalence class containing both 
paths going through P and through Q. Within our framework, then, this is 
the true meaning of the concept of  an "observer ."  

But now we have that the/ -equivalence classes either go through P or 
else they go through Q. Let Ep and S.Q be typical such/-equivalence classes, 
going through P and Q, respectively. We can divide up the paths in Ep into 
three segments, namely the first segment from a Ui up to the source, then 
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the second segment from the source to P, and finally the third segment from 
P to OUi. Also, the paths in EQ can be divided into three segments, but 
this time going through Q. Now the number of different segments from a Ui 
to the source is the same, both for Xe and ZQ. Similarly, we can assume 
that the number of different segments from P to 0 U~ and from Q to o U~ is 
the same, since the specification of the two-slit experiment gives no particular 
reason to favor one or the other route. Finally, we have the middle segments, 
but here the result P is favored, according to the ratio of  ~o(P)  to ~o(Q). 
In summary, then, the ratio of  ~o(P)  to ~o(Q) should be expected to be 
similar to the ratio of ~ ( P )  to ~ ( Q )  for all i > 0 .  

7. FURTHER ASSUMPTIONS CONCERNING THE 
STATISTICS OF DISCRETE SPACES 

The considerations of  the last paragraph show that a discrete model 
for classical physics can have statistical properties very much like those in 
the theory of  quantum mechanics. But there is more to quantum mechanics 
than this. It may be true that P is favored over Q in the context of an 
experiment where P and Q are mutually exclusive results. The existence 
of the "observer" ensures, by definition, that paths through P cannot be in 
the same equivalence class as paths through Q. 

Going beyond this, quantum mechanics deals with larger experiments, 
where possible paths leading to larger results can either go through P or 
through Q. That is, one imagines that the "observer" decides not to look, 
and so the paths through P and Q can "interfere" with one another. Now 
it is true that all of this quantum reasoning can easily dissolve into the 
traditional, spongy quantum "philosophy." But the one precise condition 
of quantum mechanics is that the same amplitude function should describe 
the situation, both in the case that the "observer" decides to look and in 
the alternative case that he decides to look away. 

Can the same condition be shown to hold in discrete classical physics? 
For this it is necessary to make a number of further general assumptions 
concerning the experimental process. 

(A) Let any finite collection of spaces of finite particle paths be given 
in some compact region of  space-time. Then the first assumption is that 
there is an "experiment"  which admits only spaces in this collection. Put 
another way, the condition is that the concept of an "experiment" can be 
completely defined by simply specifying in a compact region the set of 
possible configurations of the model which are to contain the experiment, 
i.e., an "experiment"  is nothing more than a finite list of possible configur- 
ations of the model. 
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(B) Let us say that in a given experiment, a single particle can follow 
a number of possible well-defined paths to different endpoints; for the sake 
of argument let P and Q be two possible endpoints which are unrelated to 
one another (i.e., neither P < Q, nor Q < P). Assume that the particle has 
a periodic structure which repeats itself at equal Lorentz intervals of  length 
A. Assume further that there are an equal number of possible paths leading 
to P and to Q in such a way that, according to the "classical picture," there 
is nothing to favor one result over the other. We can then assert that the 
probability of P is greater than the probability of Q if the paths leading to 
P have lengths differing from one another by a multiple of A, while the 
paths leading to Q do not have this property. 

(C) Let X and ~ be two possible paths through the experiment which 
can be compared with one another. That is, X and ~" are in the same 
equivalence class. Then the important thing when making the comparison 
is that we should look at the difference in the path lengths, modulo A. This 
is a number which we call the phase difference between X and ~'. These 
phase differences only involve particle pairs. Clearly, the number of path 
spaces in an equivalence class is influenced by the phase differences between 
pairs of possible particle paths through the experiment. Thus, the prob- 
abilities in the experiment are to be calculated by examining the set of 
phase differences between all possible pairs of particle paths. 

(D) Take X and ~ as above, and assume that they lead to one outcome 
P. The "influence" of the pair (X, ~') is such as to give a greatest possible 
increase in the probability of P if the difference in the path lengths is an 
exact multiple of A. On the other hand, the influence of (X, ~') gives a 
smallest increment to the probability of P if the difference in the path 
lengths is A/2 modulo A. 

(E) Let us now use the the letter ~ to denote the set of all possible 
paths in the experiment. We define an "influence function" F: E • _~ ~ R 
to document the effect of the set of pairs on the probabilities of different 
experimental outcomes. Let P be one possible outcome, and let -~p c _~ be 
the set of paths leading to P. Then it will be assumed that the "quantum 
mechanical" part of the probability of P, i.e., the part which is exclusively 
due to the discreteness of  the underlying model, is given by 

~(P)= E F(y,~) 

(F) Note that it is possible to return to the traditional "classical" 
calculation of probabilities if one simply chooses F(% ~:) = 0, for y # ~:. But 
these classical probabilities do not describe correctly the quantum world. 
At the moment we are only interested in the "quantum" component of the 
influence function; therefore we will assume that F(3', ~) depends only on 
the phase difference, modulo A, between the path lengths of y and (. 
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(G) Thus, we can equally well consider F as being a mapping 
F: [0, A) ~ R. Of  course the number A, representing the constant Lorentz 
distance in the discrete structure of a given particle, provides us with a 
basic unit of  measurement.  We can choose our units of  measurement  in 
such a way that the number  A appears to be simple. For example,  choose 
the basic units of  space-time so that A = 2~'. Then to simplify matters further, 
consider F as being a function F: [-~r, ~-)~ R. 

(H) When thinking about our previous arguments, it is clear that F 
must have a maximum at 0 and a minimum at ~-. Furthermore, we will 
assume that F should be continuous and it should be monotone between 
0 and 7r. Finally, an obvious symmetry is F(O)  --- F ( -  0) ,  for all 0 c [ - r r ,  zr). 
This reflects a symmetry in the definition of all discrete particle path models. 

(I) One experiment can be considered as being embedded within 
another. Eventually it is possible to imagine arbitrarily large experiments, 
containing any given experiment which we might practically consider. Thus, 
the function F will be assumed to have a universal property: it is the same 
for all possible experiments. 

Note that the assumption of continuity rules out a special weighting 
for pairs of  the form F(% 3'). This means that we are ignoring "classical" 
effects, which would be concerned with properties of  individual paths. 
Instead, F is only concerned with the "quan tum"  statistics which are due 
to the effects of  pairs of  paths. Perhaps a most general framework would 
allow "singularities" in the definition of the function F--ref lect ing 
"classical" effects--and then a continuous and monotone F, as in property 
G above, to reflect the "quan tum"  effects. But since we are only concerned 
with explaining the quantum part, it is sufficient for us to ignore the 
"classical" effects, and this means we may assume that F is continuous. 

8. CAUSALITY 

The idea of cause and effect plays a large role in physics. Any physical 
process is the cause of various disturbances in space and time which 
influence further processes in the future world. One might say that any 
model for physics which is based on the idea of a partially ordered set must 
satisfy the condition of "causality." The ordering itself can be thought of  
as being a "causal relationship," and so philosophical speculation on the 
idea of " t ime"  is reduced to an elementary mathematical  definition. But if 
we were simply to define time in this way, then we would ignore important  
aspects of  the experimental process itself. 

Given that physics is concerned with the prediction of probabilities 
for the outcomes of experiments, then the idea of cause and effect in physics 
should also be concerned with a condition on these probabilities. However, 
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in saying this, the condition becomes obvious: it is that the probabili ty 
calculated for a given experimental  outcome (meaning a point in the partially 
ordered set) should only depend upon the specifications of  the experiment 
in the past with respect to that point. We will call this the condition of 
strong causality. 

This definition may seem to be quite simple and natural, but in fact it 
is extremely restrictive. Our analysis of  discrete statistics has shown that 
the quantum mechanical probabilities are very strongly influenced by the 
conditions in the future world, i.e., the phase differences between possible 
paths at various points in the future. Thus, the condition of strong causality 
is the requirement that this influence must be "masked"  in such a way that 
we are unable to see it. What does this mean? Essentially it means that the 
discrete effects in the statistics must be completely "smoothed out." Techni- 
cally speaking, it means that the statistics must be such that they can be 
calculated using the complex "ampli tude functions" in the traditional 
description of quantum mechanics. The next few sections will be devoted 
to establishing this interesting new result. 

The condition that probabilities obey a causality condition might be 
thought of  as being stronger than the basic requirement that all models for 
physics should be partially ordered sets. It is easy to see that a model which 
is not a partially ordered set leads to paradoxes which are impossible to 
resolve, and thus it should be dismissed. But what about the more general 
case of  probabilities being influenced by conditions in the future? It is no 
longer possible to cite, for example,  the absurdity of  an experimenter who 
murders his parents. Perhaps the parent who learns that there is an increased 
probability of the child being a murderer  will thereby become influenced 
to violence! Thus, mere probabilities do not lead to definite paradoxes.  
Nevertheless, the condition of strong causality is just as necessary as the 
simpler condition of elementary causality. The fact is that we are dealing 
here with the concept of  probabilities. Probabilities must be calculated using 
a / / t h e  information available to the experimenter. Thus, it is nonsense to 
say at first that the probabili ty has been calculated to have some value, but 
then after the experiment has been performed, to declare that one was really 
interested in some other experiment, and one had meant to calculate the 
probabilities differently ! 

9. S T R O N G  CAUSALITY IN PARTICLE PATH SPACES 

An appropriate  technical condition for the concept of  strong causality 
can be formulated as follows. What is an "exper iment"?  It is a finite 
collection of paths, forming a partially ordered set. But we may also consider 
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another experiment. This is another finite collection of paths. The collection 
may contain some points and paths of the original experiment, thus allowing 
various points of correspondence between the different experiments. How 
should the probabilities for different outcomes of an experiment be calcu- 
lated? Keeping in mind the conclusions of Section 7, I will assume that if 
an experiment involves determining whether or not a particle travels from 
a point p to a point q, then the probability of  this event occurring is to be 
calculated by considering the set ~ of all possible paths in the experiment 
which contain both p and q. (Note that we are assuming that p < q here. 
The points p and q are very much different from the points P and Q - -  
representing alternative results of a given experiment--which were used in 
the previous arguments.) Specifically, there exists some function F: E x E -~ 
R such that the probability ~(p ,  q) of a particle going from p to q is given 
by 

~ (p ,  q ) =  Y, F(y ,  ~:) 

where ~p,q is the set of all possible paths in the experiment from p to q. 
When considering particle interactions in classical physics, the total 

action on a particle is taken to result from the sum of all pairwise interactions 
with the other particles. But we should not make the mistake of interpreting 
F(y ,  ~:) as a measure of such an interaction. Remember that 3' and s c represent 
two different possible paths through a given experiment, that is, two different 
configurations of the underlying model of the experiment. Of course, these 
different possibilities cannot interact directly with one another. The argu- 
ment of the present section is formulated in terms of the particle paths of 
noninteracting particles. But this is not to say that it is irrelevant for 
describing interacting particles. In the interacting case, a "particle path" 
could be taken to be a Feynman diagram. The finite set of space-time points 
where interaction occurs in such a diagram can be thought of as building 
the partially ordered set. 

The condition of strong causality can now be stated as follows. We 
have the given experiment; if another experiment is also considered which 
contains the original experiment, then within the larger experiment the 
probability of a particle going from p to q can be calculated by adding up 
the statistical weightings of the paths containing the points p and q. The 
model will be said to satisfy the condition of  strong causality i f - -under  the 
assumption that we have no particular knowledge about the larger experi- 
ment which would tend to favor one or another of the possible results of 
the given, original experiment-- then the probability which is calculated in 
the larger experiment must always be the same as that which is calculated 
using the expression above. 
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10. STRONG CAUSALITY PLACES A C O N D I T I O N  
ON T H E  INFLUENCE F UNC TION 

Let three points p, q, r c M 4 be given with both p < q and p < r, and 
such that q and r are not related to one another  in the causal ordering. We 
shall imagine that corresponding to any possible finite set "~ of  paths from 
p to q or r there exists an experiment containing just those paths, which 
can be denoted E(E) .  Within the f ramework of particle path spaces, this 
is surely the most general possible way to describe the idea of an "experi-  
ment"  which has two possible different outcomes. More general experi- 
ments, with many different possible outcomes, can be constructed from 
these elementary experiments. 

We will now set ourselves the task of  describing a very special class 
of  "exper iments"  which are designed to illustrate the use of  the principle 
of  strong causality. For these experiments we will take three points p, q, 
and r as above and imagine them to be fixed. The simplest such experiment 
consists of  just two straight paths connecting p to q and r, respectively. Let 
~7 be the set consisting of  these two paths. 

In addition to "~ there are many more experiments in the special class. 
A typical experiment will be denoted by E(E,~). Let two further points 
x < p  and y > {q} u {r} be given. Then "~# is a set of  paths from x to y such 
that each path in ~" is contained in a path in "~#, and conversely any path 
in ~ e  which passes through q or r corresponds with a path in ~. In addition, 
~'# contains a large, but finite, number  of  paths which go directly from x 
to y, without going through {q} u {r}. A typical such path will be denoted 
by ~'. Regardless of whether the result of  the experiment E ( ~ )  is that the 
particle goes through q or r, still each path such as ~" is also a possibility 
for the larger experiment E ( ~ # )  (Figure 2). 

Y 

x 

Fig. 2. 
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It may be useful to imagine these particle paths as being embedded 
within Minkowski space M 4. But for the purposes of the present section it 
is not necessary to assume very much about the geometry of the experiment. 
The important point is that each path, such as y, can be assigned some 
number L(y), the "length" of y, and, as in Section 7, condition F, the 
function F will be assumed to depend only on the lengths of the various 
paths. That is to say, one can equate F(y, ~) with, say, f (L(y ) ,  L(~)), for 
some suitable function f :  R x R-~ R. (This idea also makes sense in the case 
when a "path"  is taken to be a Feynman diagram. Here one is interested 
in the space-time positions of  possible measurement points, and thus length 
simply measures the relative positions of such points; it is not to be thought 
of as being the total length of all free particle paths in the diagram.) 

We have specified a formula for calculating ~(p ,  q) and N(p, r) within 
the experiment E. Assume that the geometry of the experiment is such that 
the path length from p to q is the same as the path length from p to r. We 
assume that the larger experiment E ( E # )  is such that the paths in E# consist 
of the paths such as if, which go directly from x to y, plus the paths in ~7, 
but extended by a single path segment from x to p and from either q or r 
to y. The extension from q to y has a length which differs from the length 
of the extension from r to y by some definite value, call it 6. Using our 
formula, one calculates that in the experiment E ( E )  the probability of a 
particle traveling from p to q is 

~(P, q) = 2 f (L(y) ,  L(~)) =f(L(%),  L(yq)) 
all paths in ~ #  through q 

where yq is the unique path in = through q. 
Furthermore, we have 

~ (p ,  r ) =  E f ( L ( y ' ) ,  L(~')) = f ( L ( 7 , ) ,  L(Tr)) 
all paths in ~ #  through r 

The assumption that the path lengths are equal for each result means that 
~ ( p , q ) = ~ ( p , r ) .  

On the other hand, we can consider the experiment E# .  The new terms 
in the formula for the probability that a particle travels from x to y involve 
the "influence" terms between the paths such as if, which go directly from 
x to y, and the two special paths through q and r. These terms are 

~#(q) = ~. f (L(y) ,  L(~)) = 2 x y. f(L(yq),  L(~)) 
T, ' ~  ~'~ with 3' or  ~'= 3",t ~ #  

and 

~ ( r )  = s f ( L ( y ) ,  L (~ ' ) )=2x  ~ f (L(yr ) ,  L(~')) 
3% ~ #  with T or ~'~ Yr ~rc~--~# 
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We would like to assert that ~# (q )  = ~ # ( r ) ,  which would allow us to 
conclude that the probabili ty of  q is equal to the probabili ty of  r also within 
the larger experiment E (~-#). Surely this is the condition of strong causality, 
as stated in Section 9. But of  course one should keep in mind the fact that 
the condition ~ , ( q )  = ~ # ( r )  is really a condition on the set of paths in 
~ # .  What does it mean? It is that within the larger experiment E ( ~ # ) ,  the 
total influence of all paths in E~ on the path yq is assumed to be equal to 
the total influence of all paths in E# on the other path yr. This is just the 
condition that we have no particular knowledge about the larger experiment 
which would tend to favor either the result q or r. 

But the paths in E~ were chosen in such a way that the formula 

Z f(L(~/q),t(~))= E f(L(yq)+6, L(~)) 

must hold, for arbitrary "phase  angles" 6, and arbitrary experiments E# in 
the special class which we are considering in this section. 

At this point it is appropriate  to recall a result from Hemion (1988). 

Theorem. Let u: [-~r, r ]  ~ [ - 1 ,  +1] be a continuous function. Assume 
that u(O) = u(-O) for all O e  [-Tr, ~-), and that u(0) = 1, u(-Tr)  = - 1 ,  and 
u is monotone in the domain [0, ~r). Assume also that if J = {jl . . . . .  j2,} is 
some finite set of  numbers with ji 6 [-Tr, 7r) for all i = 1 , . . . ,  2n such that 
( 1 ) j i = - j ; + ,  for each i =  1 , . . . ,  n and (2) i f ~  u(j~) =0,  then ~ u(j~+q~)=O 
for any "phase  angle" ~ e [-~r, ~r). I f  these conditions are fulfilled, then 
u(O) = cos O. 

This theorem can be applied to the influence function. Condition 1 
corresponds to the symmetry requirement of  Section 7, condition G. Condi- 
tion 2 is the condition of  strong causality. We have assumed in Section 7, 
condition F, that F is a function from the interval [-Tr, ~') to the real 
numbers R. In the theorem, we replace the range by the interval [ -1 ,  +1]. 
But this is mere convenience. In general, the range of F could be any 
compact  interval [a, b], and then the theorem would imply that F would 
be the cosine function with period 27r, normalized to vary between a and 
b, rather than -1  and +1. 

11. A M P L I T U D E  F U N C T I O N S  

The result of  the last section implies, in turn, that the probabilities for 
the experiment can be described using a (suitably normalized) amplitude 
function of pathlength. One need only take the amplitude function g: ~-~ C 
given by 

g (y )  = e iL~r~ for any y c E  
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Then [ignoring special weightings for the terms of the form f (% y); they 
cannot be accounted for in an amplitude theory], summing over the paths 
through q, we have 

~(P,q)= ~, f (%~) 
,y,,fcE 

= ( c o n s t a n t )  x y~ c o s { L ( y ) - L ( ~ : ) }  

constant 

2 ~,,~-_- 
e i {L(y) -L(~)}  + e i{L(~-)-L('/)} 

:, onstan,  e 

I 
Thus, probabilities can be calculated by summing the complex amplitudes 
over all possible alternative paths and then taking the square of the absolute 
value. This is the usual prescription which is to be found in any textbook 
on quantum mechanics. 

It is interesting to consider whether the converse result--namely that 
a particle-path model which admits an amplitude function is strongly 
causal--also holds. But in a sense, this follows directly from the definition 
of an amplitude space. Probabilities are defined in terms of the amplitudes 
which are assigned to the paths. Thus, the definition leaves no scope for 
questions of alternative settings in a given experimental situation. By default, 
then, one might conclude that the property of strong causality must hold. 

Such questions can only be sensibly posed if the probability is derived 
from some concrete underlying model. It is possible to define an amplitude 
function on the set of paths in a particle-path space in such a way that 
intermediate segments along the paths are also given definite values. If this 
is done in a consistent way (for example, the usual Feynman path-integral 
prescription), then one might say that the definition itself satisfies the 
condition of strong causality. 

But returning to the main theme, the natural question is, are (discretized 
versions of) the models which are usually considered in classical physics 
strongly causal, and thus is it a reasonable idea to assume that amplitude 
functions describe well their probabilities? Unfortunately, this question 
appears to be very difficult to resolve. In general, it is easy to define a 
number which we choose to call a "probability." But the question of deriving 
true values for the probabilities from given models is a very different 
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proposition. However, even if the models are not strongly causal, still we 
might expect to have a reasonably smooth function f, which is a (more or 
less good) approximation to the smooth cosine function, and thus to the 
probabilities calculated using the standard methods of quantum mechanics. 

12. S H O U L D  PROBABILITIES BE D E F I N E D m  
OR DERIVEDmlN A MODEL?  

In the traditional, classical physics, one begins by imagining some 
model for the physical world. The next step is to define a collection of 
mathematical rules, usually formulated in terms of differential equations, 
which the objects in the model are to obey. A "theory of physics" is then 
the idea that some aspect of  the physical world can be best understood by 
thinking about the model. 

For example, a model for a gas can be obtained by imagining that 
some region of space-time is enclosed in a perfect box. The interior of the 
box is then filled with a finite number of perfectly round and elastic billiard 
balls which are given some initial configuration. The mathematical proper- 
ties of this model can often be successfully used to explain aspects of the 
physical world. Another example, which is very often discussed, is the 
pendulum. The object of  the model is now a simple mechanism, which is 
described using a differential equation. 

Both of  these models illustrate two important ideas about classical 
model building. 

1. Each model describes only a small part of the physical world. But 
more than that, each model is truly just a model, it is obviously not reality 
itself! After all, who could possibly believe that the world is composed of 
unobservably tiny billiard balls? The pendulum model has even fewer 
pretenses to being complete in any sense--the pendulum is itself composed 
of  matter which could be taken apart (thus destroying the clock, which was 
the subject of the model). Furthermore, there is clearly more to the universe 
than a single pendulum! 

2. The second idea is that the models do not make any explicit statistical 
predictions on the results of  practical experiments. Statistics come into the 
gas model through the assumption of some range of possible values for the 
initial configuration. Thus, the model itself does not produce statistical 
uncertainty; rather a given initial statistical distribution is transformed by 
the mechanism of the model into a definite final distribution. The pendulum 
model has even less to do with predicting the probabilities of experiments. 
The clock may go irregularly, but this will be attributed to "outside influen- 
ces" which disturb the perfect workings of the mechanism. Thus, in both 
of  these examples, the idea of actively and nontrivially observing things in 
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the physical world plays no essential role. In order to account for observa- 
tional deviations from the models, one imagines that the models are incom- 
plete. A more perfect model will involve more details of the physical 
wor ld- - for  example, friction in the bearings of the pendulum, or electro- 
magnetic and gravitational fields which may penetrate the walls surrounding 
the box of gas. 

But according to our point of view, it is possible to consider a sort of 
hierarchy of models of  the physical world. Each model in the hierarchy is 
an extension and refinement of the previous model. While each single model 
may be complete and fully determinate, nevertheless at each step an uncer- 
tainty is present which is then attributed to the idea that one should really 
be considering things in the next higher model in the hierarchy. Another 
way of doing things is to redefine the hierarchy of models in such a way 
that the uncertainty is specified at each stage. Surely this later method 
reflects more nearly our usual practical experience. One might object that 
it is less definite than the traditional type of model building, but is this 
true? Whether the uncertainty is attributed to an indefiniteness in the 
embedding within a larger model or is simply defined in the original model, 
the practical result in the prediction of the results of experiments is the same. 

There is, however, one problem with this idea. If we agree to include 
uncertainty in the definition of  a model, then we return to the usual picture 
of physics in terms of a mysterious conception of the amplitude function. 
But the real problem is that we want more of a model than just the calculation 
of the probabilities for the results of experiments; namely a model should 
also help us to understand the physical world. 

Of course this can be a rather nebulous idea. For example, it is surely 
the case that the pendulum model of an old-fashioned clock does not help 
us to understand its workings. The model is nothing more than an idealized 
description of what we imagine the motion should be. Many people may 
say that a mere description is all that can be expected of a physical theory, 
but surely an inquiring mind demands more. One would like to understand 
what reason there is for defining the probabilities in the quantum mechanical 
way. The advantage of having a hierarchy of definite models is that the 
embedding of each model within a larger one should bring with it an 
understandable mechanism for producing the uncertainty at each stage. 
That is precisely what is missing in the standard formulation of quantum 
mechanics. 

One way to proceed is to refer to the argument of the previous section. 
It was shown there that, within the framework of a discrete particle-path 
model, the quantum statistics are necessary in order to ensure that the 
predictions of a theory of physics obey the principle of causality. Thus, we 
can say that (1) if a discrete classical model which obeys the rules in Section 
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7 is chosen, then "interference" effects should be considered when calculat- 
ing the probabilities for the results of experiments. Given this, then (2) it 
is reasonable to assume that causality holds, and thus the quantum statistics. 
But if we simply proceed to define a given hierarchic model, together with 
a set of rules for calculating probabilities at different stages, then, as far as 
an understanding of the reasons for the quantum statistics is concerned, 
we become involved in a questionable argument. It is namely the case that 
the condition 2 follows from the condition 1, not vice versa. 

Therefore, the question becomes, what model, and therefore what 
classical variational principle, should we choose? Unfortunately these ques- 
tions are, in practice, too difficult to deal with: the mathematical complexity 
simply becomes too great. Given this, then, the best method to proceed is 
perhaps the following. First, a definite variational principle for a given 
model may be considered. Then the next task is to justify the assertion that 
the conditions of Section 7 are valid, and thus that the range of possible 
extensions of the model to larger models is such as to produce the quantum 
statistics. 

13. JUSTIFYING THE USE OF FEYNMAN DIAGRAMS 

What are Feynman diagrams? The conventional answer is that they 
are pictorial representations of a formal infinite series--the "perturbation 
expansion" of  a hypothetical "amplitude function" for a given quantum 
mechanical process. But then in the same breath it is asserted that the series 
is meaningless, in some profound- -and  thus meaningless--sense! On the 
other hand, all practical physicists (and almost all theoretical physicists) 
think about Feynman diagrams in a completely different way. In fact they 
imagine that each Feynman diagram represents a possible configuration of 
a classical model, in the sense which we have been discussing in this paper. 
Thus, for example, they speak about the "probability for a photon to be 
exchanged between two electrons" and so forth. 

It is true that physicists have been taught to respect the philosophy of 
Nils Bohr, as it is formulated within the "Copenhagen interpretation" of 
quantum mechanics. Perhaps they do this by qualifying each definite state- 
ment with "so to speak," as for example: A photon <<so to speak>> travels 
<<so to speak~ from point A to point B. But 60 years of deep philosophical 
debate have only served to confirm the view that such qualifiers are nonsense ! 
In reality Feynman's achievement was to provide a practical and simple 
mathematical model for the discrete world of quantum physics. 

What is this model? It consists of a set of possible configurations: 
namely the set of finite, connected, directed graphs, together with various 
further properties. Let us concentrate on the theory of QED, where the 
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graphs can have two different kinds of edges--photon and electron lines. 
Now the graphs are finite in the sense that they have only finitely many 
vertices. The vertices (one might call them "events") determine the structure 
of the physical world, at least as far as it is being modeled by quantum 
mechanics. In QED the "internal" vertices meet precisely three edges: 
namely, one photon line and two electron lines. A graph may also have 
external edges, whose "outer"  endpoints are vertices meeting no other edges. 
But then a hierarchy of  graphs can be considered, and it is found that in 
larger graphs in the hierarchy, these external vertices become internal ones. 
The external photon lines represent the "external electromagnetic fields" 
according to Maxwell's philosophy. But following the arguments in the 
present paper, it might be better to construct hierarchies in such a way that 
at each stage, only external electron lines appear. 

The electron lines represent freely moving electrons: i.e., electrons 
which do not interact with themselves or with other particles. We may 
assume that such free electrons have some further discrete structure which 
occurs at equal Lorentz spacings along the electron line. [This could be 
modeled according to the ideas in Section 6, or perhaps a better model 
would be obtained using a spiral structure for free electron paths, as in 
Hestenes (1985).] We have shown that given a realistic set of statistical 
assumptions, then the free particle statistics are given by the usual complex 
amplitude functions of quantum mechanics. But remember of course that 
these statistical assumptions cannot be deduced from the model itself! After 
all, we can assert that the actual world is fixed and definite, and thus not 
subject to statistical considerations. Statistics only come into things when 
we impose ourselves--fallible human beings with only a partial knowledge 
of  the si tuat ion--onto the model. 

As most people understand the Feynman diagram model, the free 
particle edges represent electrons traveling in straight lines through the 
usual continuous model of space-time given by Minkowski space M 4. 
However, I have argued in Hemion (1989) that the real-world geometry is 
determined by the fact that there must be an isomorphism between the 
group Of linear transformations of the real world of known events which 
define a given experiment, and the group of linear transformations of the 
complex world of amplitude functions representing the possible outcomes 
of  experiments. This means that it is not appropriate to impose the geometry 
of  m 4 on the set of graphs from the outset. It would be better to allow a 
more general discrete geometry, for example, as described in Hemion (1988). 
Given some arbitrary set of "known events," then the most general idea of 
an "exper iment"--def ined in terms of its possible experimental results--  
would be obtained by specifying which known events should or should not 
precede different possible results. (This new definition can be contrasted 
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with the definition given in Section 7 of  the present paper.) We are led to 
the idea of a geometry of  "posit ions," as was explained in the previous 
paper. Perhaps then the geometry of the actual world is not that of  M 4, 
but at least--fol lowing the arguments in Hemion (1989)--we can assert 
that it is probably near the usual geometry of four-dimensional Minkowski 
space. 

Some readers may object that it is not natural to remove the f ramework 
of Feynman graphs from its usual continuous geometry. But they should 
remember  that many of  the traditional paradoxes of  quantum mechanics 
are related to the fact that our usual geometric reasoning is wrong in the 
quantum world. For example,  let an electron line be given which connects 
two points P, Q c M 4. According to the classical picture, the momentum 
of the electron is thus fixed. But in quantum mechanics, all momenta  are 
possible; indeed, all momenta  are equally likely! This example shows quite 
dear ly  that, in reality, it is unnatural to impose the geometry of M 4 o n  

each individual Feynman graph. This geometry appears more naturally as 
a property of  the ensemble of  all possible Feynman graphs! 

14. DISCRETE PARTICLE INTERACTIONS 

The statistics of  free particle motion is given by the free particle Dirac 
equation. One can define the idea of "free particles" to mean that the 
ampli tude function is a plane wave in space-time. The free particle Dirac 
equation can then be deduced in the standard way dealt with in most 
textbooks [for example,  see Chapter  2 of  Ryder (1985)]. Of  course this 
equation is nothing more than a particular way of formulating the classical 
isomorphism between SL(2, C) and the restricted Lorentz group. [See van 
der Waerden (1948) for a most general treatment of isomorphisms of linear 
groups.] The free particle Dirac equation is i~'~b -- m~,. It provides a condi- 
tion on possible complex-valued amplitude functions ~b. 

How does the situation change if we no longer have free particles? 
Quite obviously the free particle Dirac equation will then no longer hold. 
Thus, we can write 

i]7~b = ~  

This is the Dirac equation for interacting par t ic les-- formulated in an 
unusual way. In contrast to the free particle Dirac equation, which placed 
a definite condition on ~p, this new equation is nothing but a definition. It 
is namely the case that a certain 4-vector, which we call B, is defined in 
terms of the derivative of  ~. 

Our equation does not as yet look like the version which is to be found 
in most books. We have defined ~,  and also we have an idea of the free 
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particle mass rn (as expressed in the free particle Dirac equation). Therefore, 
it is possible to write rn + e / f =  ~. The number  e is taken to be fixed, and 
is called the "electrical charge" of the particle. Seen in this way, we have 
defined a new quantity, A', which provides us with a new 4-vector, namely 
A, the electromagnetic vector potential. But then having d e f i n e d / ( ,  we can 
also define the electrical current using the standard rule j "  = OoF ~ where 
Fo~ = OOA ~ _ 3~A ~ 

The usual step now is to go ahead and identify the electrical current 
with the Dirac current, representing the "flow" of  the electrons. But what 
is the result of  this identification? The matter  current is usually interpreted 
in terms of the probabili ty of  finding particles at the given point of  space- 
time. I f  the current becomes very large, then this means that it is probable 
that there are many particles near the point. But many particles should then 
produce a more intensive electrical current. This way of thinking leads to 
the idea that the two coupled currents must be involved in an endless 
process of  intensifying one another. Once again, we encounter the mys- 
terious idea of an infinitely intense "singularity" in a field theory. Therefore, 
this simple idea of identifying the electrical and the Dirac currents seems 
to lead us into great problems. 

Fortunately, though, there is a much simpler and more elegant way of 
proceeding; namely that which is actual ly  followed in the theory of QED! 
Recall that the matter current does not really describe a flow of matter 
through smooth Minkowski space. In fact, a true flow of matter, such as 
the movement  of  water through a pipeline, cannot be described in terms of 
a simple amplitude function, as here. On the contrary, the amplitude function 
only has meaning within some specific experiment,  and the particle experi- 
ments which involve simple Feynman diagrams are very different from the 
commonsense idea of an experiment with smoothly flowing, continuous 
matter. 

What is the true meaning of the Dirac current? It is defined in terms 
of  the ampli tude function on Minkowski space. But Minkowski space itself 
is only the geometry of the ensemble of  all possible configurations of  the 
underlying, discrete model. In QED, this underlying model is the set of  all 
possible Feynman diagrams. Within QED, the amplitude function is defined 
in such a way as to enable us to calculate the relative probabilities to be 
assigned to the various diagrams; that is, the probabilities that particles 
travel freely from vertex to vertex, according to the details of  some given 
diagram. It may be that this underlying model is governed by some definite 
rules which determine the form of the particle interactions. If  so, these rules 
must determine the structure of  each single diagram; only in an indirect 
way can they determine the statistical rules which govern the ensemble of 
all possible diagrams. Thus, it is nonsense to say that the statistical "flow 
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of matter" generates electrical currents which influence each individual 
diagram in the ensemble! 

Of course, QED does recognize the idea of an electron self-energy. But 
this "self-energy" is something which is much simpler: namely the recogni- 
tion that many different diagrams can describe a single experiment. Thus, 
the actual probabilities are not those which would be calculated if we 
decided to choose only the simplest imaginable diagram and ignored all 
others. Indeed, by choosing only a single diagram, one would be denying 
the importance of statistics in physics. Thus, leaving out such a "self-energy" 
would be as false as the more usual mistake which people make of confusing 
an ensemble of  possible configurations of a model with the configurations 
themselves. 

What is the rule in QED for describing the electrical interaction gener- 
ated by a particle? The rule is that each particle proceeds freely from vertex 
to vertex; that is, the interactions can only occur at the vertices. Along the 
line segments between vertices, there can be no interactions. However, if 
we restrict the electrical "current"  to the discrete set of vertices in a given 
graph, then the possibilities for the electromagnetic vector potential A 
become strongly reduced. In fact it is clear that electromagnetism must be 
gauge invariant. (This will be dealt with further in the next section.) There 
are only few possible solutions for gauge-invariant fields propagating in a 
vacuum from a point of singularity. The choice made in QED for describing 
these fields is justified in a standard way in most textbooks. 

For some strange reason, many contemporary theoretical physicists 
profess themselves to be dissatisfied with this simple rule. Having a discrete 
electrical current gives us discrete photons. The alternative to this rule would 
seem to be some sort of new theory involving the concept of "cont inuous" 
photons. Is this truly the goal of contemporary theoretical physics? Surely 
even such theorists would be prepared to accept the empirical fact, as 
demonstrated long ago by Einstein, that light is quantized. They may argue 
that such concepts as "photons"  or "electrons" play no role in the pure 
Copenhagen philosophy, and thus the quantization of light should follow 
from more subtle and indirect principles. But by the same token, such 
arguments hardly provide a compelling reason for rejecting the existing 
discrete quantum field theory, based on Feynman diagrams. 

15. GAUGE INVARIANCE 

What is the reason for gauge invariance? We have defined the vector 
potential, and thus the electromagnetic field, to be a measure of the departure 
of  the amplitude function from the constant wavelength in the free particle 
case. The amplitude function is only of importance in that it determines 
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the probabilities for the different results of given experiments. In particular, 
if different amplitude functions lead to identical probabilities, then it must 
be that the electromagnetic field corresponding to the change from one 
amplitude function to the other cannot affect the probabilities. 

There is one class of variations of the amplitude functions which do 
not affect the probabilities. Let A: M 4~  R be some smooth function. Now 
change the amplitude function by the substitution 0 ~ 0 .  exp(iA). This 
means that each component  of qJ is to be multiplied by the same factor at 
each point of space-time. When calculating the probabilities in practical 
experiments, the rule is that the amplitude function is first to be calculated, 
then the probability that a particle appears at a given point is obtained by 
summing over the squares of the absolute values of the components of the 
amplitude function. Clearly, this process is invariant with respect to the 
gauge transformation A. 

Note in particular that ~O is generally obtained by summing over a 
number of discrete paths, say from a starting point X to an endpoint Y. 
Let us consider just paths from X to Y through two possible intermediate 
points P~ and P2. By possibly adding in a constant factor, we may assume 
that the gauge function A vanishes at X. The amplitude before the gauge 
transformation at Pi might be denoted 0i. Afterward it is ~Oi" exp(iAi), where 
Ai = A(Pi). Similarly, the untransformed amplitude from P~ to Q is, say, r 
After the gauge transformation it is r exp[i(A o -A i ) ] ,  where AQ = A(Q). 
Thus, the total amplitude from P to Q is first 

0 =  01 " r  r 

and after the gauge transformation, it is 

61 e~A" ~01 e ~(A~ A')+62 e ~A2" @2 ei(A~ t) eiA~ 

One sees from this example that such gauge transformations are consistent 
with the process of forming the amplitude function by summing over 
different discrete paths. 

The existence of these gauge transformations shows that when we use 
amplitude functions in order to calculate probabilities, then we must accept 
the fact that this brings with it a certain redundancy; a whole class of 
different amplitudes all describe one single probability distribution. On the 
other hand, given a particular amplitude function qJ, we can look at the 
Dirac equation and use it to assign some electromagnetic vector potential 
A to 6. But then we can take an arbitrary gauge transformation and apply 
it to 0- The result is that we must expect to obtain a different electromagnetic 
vector potential 

1 
A ~ A ~ + - O ~ A  

e 
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The principle of gauge invariance is the assertion that the "physics" of the 
situation remain unaffected by such transformations. It is clear that this 
principle is a basic consequence of the quantum mechanical description of 
nature. Put another way, any attempt to use quantum mechanics to describe 
non-gauge-invariant fields would simply bring us into a state of  logical 
contradiction ! 

Of  course it is important  to note that there is more redundancy than 
this in the amplitude functions. The fact that the amplitude functions which 
we are now dealing with have essentially two components  means that gauge 
"rotat ions"  in these components  through space-time can also be introduced, 
without affecting the calculated probabilities. The situation becomes still 
more interesting if the redundancies of amplitude functions with three or 
more components  are considered. This leads in the usual way to the theories 
of  the weak and strong forces. 

Finally, the role of  renormalization theory in gauge theories should be 
discussed. In a discrete geometry, such as that dealt with in Hemion (1988), 
there is a smallest possible distance for the separation of two events- - that  
is, two vertices in a given diagram. This can be formulated in terms of a 
momentum cutoff, precisely according to Feynman's  original formulation! 
Therefore, in contrast to the usual ideas of  theoretical physics, we find that 
renormalization is an essential and natural component  of  the theory. But 
there is more to renormalization than this. A theory is said to be "renormaliz- 
able" if the details of  the cutoff can never be investigated by means of 
practical experiments. This leads us back to the discussion in Section 6. 
Therefore, it is hardly surprising that it is precisely the gauge theories of  
physical relevance which can be shown to be renormalizable. After all, a 
theory of interaction which allows some method of determining the discrete 
structure of  space-time would obviously fail to be gauge invariant! 

16 .  DOES Q U A N T U M  M E C H A N I C S  AC COUNT FOR ALL 
PARTICLE INTERACTIONS?  

In Section 6 we have described a certain statistical effect which should 
influence the probabilities in discrete particle systems. Can there be other 
"classical" effects which could also affect the probabilities? According to 
the theory of quantum mechanics, all phenomena  in the physical world can 
be described purely in terms of quantum statistical effects. Thus, it is 
appropriate  to investigate the question of whether or not it is possible to 
have "nonquan tum"  statistical effects in our discrete classical physics. 

But what would it mean to have nonquantum statistical effects? To 
answer this question, it is important to think carefully about the role of 
statistics in physics. To begin with, it is clear that statistics is used to describe 
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many different kinds of situations where our knowledge is incomplete. For 
example, statistics is often used in biology, or in economics. But obviously 
it Would be absurd to apply the theory of  quantum mechanics, say, to the 
analysis of  the sales of some commercial product! In reality, quantum 
statistics is only relevant when it comes to describing the "basic" phenomena 
of physics. 

But what are these basic phenomena? Certainly we can assert that our 
knowledge of  a given physical process is determined by the model which 
we use when we think about the process. At the present time, people think 
in terms of a model involving pointlike particles moving about through 
space-time. Thus, the "basic" experiments in physics must be concerned 
with testing our uncertainty about the details of these particle paths. 

In our previous arguments we have often referred to the two-slit 
interference experiment. Is this a "basic phenomenon"  in physics? Surely 
not, since it involves the use of such complicated apparatus as absorbing 
screens, slits cut into thin sheets of physical material, and so forth. To fit 
these ideas into our usual model of physics, it would be necessary to reduce 
everything to a description in terms of particles alone. But it would be 
pointless to attempt to redefine the two-slit experiment in such a manner. 
Such an attempt would miss the whole point of our discussion of the two-slit 
experiment! Its purpose was to express the idea that an "experiment '  
involving particle paths can be defined in terms of the set of possible paths 
which the particles can follow. (This is assumption A of Section 7.) Beyond 
this, we did not make further use of the two-slit experiment. 

In fact, the main assumption in Section 7 was I, namely that there is 
a universal influence function which only depends on the phase differences 
in the path lengths at the point of measurement. We now assert that this 
assumption should hold in all "basic" experiments in physics, i.e., those 
experiments whose formulation involves particles alone. But this means 
that we automatically include the case of particle interactions; after all, 
what would be the use of restricting ourselves to "free particles" alone? 
Surely we can only be aware of a particle if it interacts with other particles! 
Thus, the assumption I only makes sense if it is allowed to hold for all 
situations where particles interact with one another. Assumption A then 
becomes the asse~-tion that there are many possible particle interactions, 
which give a large range of possible phase differences in the path lengths 
for the experimental particle. 

But now we return to the previous arguments, which show that the 
statistics for such basic experiments can be described using an amplitude 
theory, and thus that they must be gauge interactions. The point at which 
nontrivial assumptions are made is in the argument in Section 14. According 
to the usual formulation of QED (and also QCD, for that matter!), the 
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particle interactions occur at discrete points along the particle paths and 
they are modeled by gauge particle lines in the appropriate Feynman 
diagrams. 

In Section 7 it was asserted that special statistical weightings for the 
individual paths due to "classical" effects should be ignored. This was 
achieved by the device of  assuming that the influence F(% ~:) should be a 
continuous function of the difference of path lengths modulo A, where A is 
a constant. But then we can decide to consider such hypothetical effects by 
allowing the possibility that the "diagonal  elements" of  the form F(y, y) 
have special weightings. 

What does it mean to assign a special statistical weighting to some 
particular path, such as y?  It means that before the experiment is performed,  
we must have had some particular prior knowledge about the path y, which 
affects our estimate of  its probabili ty during a run of the experiment. Put 
another way, we can say that the special value of F(y,  y) is a part of  the 
definition of  the experiment. But in general we are free to define things as 
we p lease- -perhaps  changing the units of  measurement  from one place to 
another throughout the experimental apparatus.  This freedom is only con- 
cerned with the way we think about a given experiment; thus, such details 
should not be put into the category of "basic phenomena"  in physics. Truly 
basic phenomena  should be independent of  these arbitrary experimental 
definitions. Given this, then it makes sense to exclude special weightings 
for the diagonal elements, and so we are left with the amplitude functions 
alone. 

17. C O N C L U S I O N  

At the present time, theoretical physics is usually taught to students in 
the following way. First the old classical physics is dealt with in order to 
make the student familiar with the ideas of  continuous space-time, vari- 
ational principles, and the derivation of "laws of na tu re" - -which  are 
differential equations. As a next step, quantum mechanics is introduced in 
the form of a collection of such laws of nature. Most students (as well as 
their teachers) find these laws to be difficult to understand. They are told 
that the laws are supposed to be "beyond understanding" in some profound 
and mystical sense. Next, variational principles are deduced, from which 
the laws of quantum mechanics can be derived in an analogous way to that 
in the method of classical physics. It is then shown that these variational 
principles lead to "d ivergen t" - - tha t  is, i l l-defined--expressions. Then 
finally the Feynman diagrams are introduced as a way of trying to make 
mathematical  sense out of  the whole theory. 
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How dismaying such a course of  study must be. Yet the students who 
do persevere are rewarded with the realization that the Feynman diagrams 
are really very easy to understand. Furthermore, these diagrams model, in 
a simple and practical way, the events which any practicing physicist 
experiences in the physics laboratory. True, the theoretical physicist may 
continue to condemn the use of  Feynman diagrams, asserting that they are 
" impure"  in some vague philosophical sense. However, the practical physi- 
Cist soon learns to ignore such discordant sounds, and, if only secretly, to 
think of the world purely in terms of these diagrams. 

The ideas in the present paper  suggest an alternative pedagogical plan. 
After a study of the old classical physics, the student could think more 
generally about  the role of  mathematical  models in physics. Statistics and 
probabili ty theory could then be studied. Probability theory would be shown 
to be important  in physics precisely because it describes our true experience 
of the world, as reflected through the experimental process. But this must 
mean that the probabilistic conditions to be imposed on a model must be 
formulated in terms of practical human experience with real-world experi- 
ments. Quantum physics could be introduced as evidence that nature is 
discrete, rather than continuous. Various methods of describing a discrete 
physics could be discussed, and it would be shown that the Feynman 
diagrams provide us with the most sensible model. The statistics of  Feynman 
diagrams would be shown to obey the "laws of quantum mechanics." 
Finally, as a matter of  historical interest, it would be shown that there exist 
variational pr inciples--s imilar  to those in the old classical physics--which,  
when applied in a formal (but formally invalid) sense, give the quantum 
mechanical laws of nature. 
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